
AWS Bedrock Guardrails × EthicalZen.ai +

SentryWorks.ai​
Integration Modes

Executive summary
This document describes practical ways to integrate AWS Bedrock Guardrails with EthicalZen.ai

and SentryWorks.ai. The goal is to give customers multiple adoption paths: from augmenting

Bedrock’s native controls, to using EthicalZen as an end-to-end safety layer, to making

SentryWorks the policy control plane across multiple LLM providers.

At a glance
●​ Mode A (Complement): keep Bedrock Guardrails; add EthicalZen Smart Guardrails that

Bedrock does not provide.

●​ Mode B (Orchestration): design guardrails in EthicalZen; provision/manage Bedrock

Guardrails via API for Bedrock apps.

●​ Mode C (Migration): start Bedrock-only; insert ACVPS Gateway; transition to

provider-agnostic enforcement without app changes.

●​ Mode D (Dual-layer): defense-in-depth with EthicalZen pre/post checks and Bedrock

at-inference checks.

●​ Mode E (Governance): define policies once in SentryWorks; auto-configure both EthicalZen

and Bedrock enforcement.

●​ Mode F (Observability bridge): unified telemetry across Bedrock/OpenAI/Groq/custom while

preserving native enforcement where available.

Problem space
●​ Bedrock Guardrails are strong for general content moderation and some PII, but customers

often need domain-specific and workflow-specific controls (finance, healthcare, legal,

academic integrity, fraud).

●​ Large enterprises run multiple LLM providers simultaneously. Provider-specific guardrails

create lock-in, inconsistent enforcement, and fragmented audit trails.

●​ Teams struggle with guardrail lifecycle at scale (draft → review → deploy → version pinning

→ retirement), especially across dozens of apps and tenants.

●​ Regulated industries require demonstrable controls: deterministic policy contracts, evidence

collection, and provable configuration drift detection.

Key tenets
●​ Defense in depth: combine pre-inference, at-inference, and post-inference controls where

possible.

●​ Deterministic contracts: encode non-negotiable rules as explicit, testable contracts that

survive provider changes.

●​ Policy once, enforce everywhere: centralize policy in SentryWorks; translate to

provider-specific mechanisms.

●​ Transparent insertion: ACVPS Gateway acts as a low-latency proxy so applications do not

need refactors to adopt new safety layers.

●​ Observable by default: every decision should produce metrics, traces, and an audit record

with version pinning.

●​ Multi-tenant first: guardrails, policies, certificates, and telemetry must be tenant-isolated

with delegated administration.

Core integration building blocks
●​ AWS Bedrock Guardrails: native runtime enforcement attached to InvokeModel via

guardrailIdentifier + guardrailVersion.

●​ ACVPS Gateway: transparent proxy for request/response interception, routing (e.g.,

X-Target-Endpoint), and enforcement chaining.

●​ EthicalZen Smart Guardrails: domain ML classifiers, embedding-based detection, gap

discovery (FMA), and deterministic contracts.

●​ SentryWorks Policy Hub: policy-as-code governance, audit requirements, and cross-platform

policy distribution.

●​ Alex Agent (EthicalZen): natural language guardrail designer that compiles policies into Smart

Guardrails and contracts.

●​ Certificates & attestation: certificate-based deployment controls and evidence of compliance

state.

●​ Observability: unified metrics/traces (Prometheus/OTel) and guardrail effectiveness analytics

across providers.

Integration modes
Each mode is a deployable pattern. Organizations may run multiple modes simultaneously by

business unit, app tier, or risk class.

Mode A: Complement mode - EthicalZen adds what Bedrock lacks
Use when the customer is committed to Bedrock and wants additional domain and enterprise

controls without changing their existing Bedrock Guardrails setup.

Reference flow
Customer App → ACVPS Gateway → [EthicalZen Guardrails] → Bedrock InvokeModel (w/

Bedrock Guardrails)​
 ↓​
 Smart Guardrails:​
 - Domain-specific (finance, healthcare, legal)​
 - FMA-discovered gaps​
 - ML classification + embeddings​
 - Deterministic contract enforcement

Customer outcome

●​ Bedrock’s native content and basic PII filters, plus specialized Smart Guardrails not offered

natively (e.g., insurance fraud detection, medical advice safety, academic integrity, bias

checks, token cost limiting).

●​ A single enforcement hop via ACVPS without re-architecting the application.

Role split

Component Primary responsibility

AWS Bedrock Guardrails General content filters, basic PII, denied

topics, word filters.

EthicalZen Smart Guardrails Domain ML guardrails, FMA gap analysis,

deterministic contracts, prompt leakage

detection, custom embedding classifiers.

ACVPS Gateway Traffic proxy, chaining, logging, and policy

version pinning.

Example use case

Healthcare assistant uses Bedrock Guardrails for general moderation and EthicalZen Smart

Guardrails for medical advice safety, mental-health crisis detection, and HIPAA-specific PII

patterns that exceed Bedrock defaults.

Implementation notes

●​ Deploy ACVPS as an L7 proxy (sidecar, ingress, or API gateway plugin) and route Bedrock

traffic through it.

●​ Run EthicalZen pre-checks before InvokeModel; let Bedrock Guardrails run at inference;

optionally run EthicalZen post-checks for contract validation.

●​ Pin contract versions and guardrail versions per environment (dev/stage/prod).

Mode B: Orchestration mode - EthicalZen manages Bedrock Guardrails via API
Use when the customer wants a single workflow to design and lifecycle-manage Bedrock

Guardrails at scale (many apps/tenants) rather than configuring each guardrail in the AWS

Console.

Reference flow
SentryWorks Policy Engine​
 ↓ (auto-configure)​
EthicalZen Portal → AWS Bedrock CreateGuardrail API​
 ↓ ↓​
 DC Contracts guardrailIdentifier​

 ↓ ↓​
ACVPS Gateway → InvokeModel + guardrailVersion

Customer outcome

●​ Single pane of glass: design guardrails in EthicalZen (Alex Agent), provision them into

Bedrock via API, and manage draft→active→retired from one platform.

●​ Consistent version pinning across applications using guardrailIdentifier + guardrailVersion.

Role split

Component Primary responsibility

EthicalZen Guardrail design (Alex Agent + FMA), lifecycle

management, multi-tenant governance,

cross-provider orchestration.

AWS Bedrock Runtime enforcement for Bedrock-hosted

models using guardrailIdentifier +

guardrailVersion.

SentryWorks Optional: upstream policy definition feeding

EthicalZen guardrail designs.

Example use case

Enterprise with 50 Bedrock-powered apps designs guardrails conversationally in EthicalZen, runs

FMA to discover gaps, then auto-pushes configurations to Bedrock using

CreateGuardrail/UpdateGuardrail APIs. One contract governs all apps.

Implementation notes

●​ Implement a Bedrock Guardrails provisioning service in EthicalZen with tenant-aware IAM

roles and least-privilege permissions.

●​ Store guardrail metadata (identifier, versions, last-updated, policy hash) for drift detection

and rollback.

●​ Expose promotion workflows (draft→review→active) with approvals and automated tests.

Mode C: Migration mode - from Bedrock-only to EthicalZen (multi-provider)
Use when the customer starts with Bedrock Guardrails but wants to reduce provider lock-in and

enforce equivalent policies across multiple LLM vendors without changing application code.

Reference flow
Phase 1: App → Bedrock (w/ Bedrock Guardrails)​
Phase 2: App → ACVPS Gateway → Bedrock (Bedrock Guardrails + EthicalZen

monitoring)​

Phase 3: App → ACVPS Gateway → [EthicalZen Guardrails] → Bedrock (no Bedrock

guardrails)​
Phase 4: App → ACVPS Gateway → [EthicalZen Guardrails] → ANY LLM

(Bedrock/OpenAI/Groq/custom)

Customer outcome

●​ Provider independence: the same safety posture across providers using EthicalZen contracts

and Smart Guardrails.

●​ Incremental adoption with minimal disruption (monitoring first, then enforcement, then

provider routing).

Role split

Component Primary responsibility

ACVPS Gateway Transparent insertion and provider routing

via headers (e.g., X-Target-Endpoint).

EthicalZen Guardrail parity mapping, deterministic

contracts to preserve continuity,

provider-agnostic enforcement.

AWS Bedrock Gradually reduced role from primary

enforcement to optional monitoring to

removed.

Example use case

Fintech using Bedrock Guardrails adds direct provider routes (e.g., Anthropic Claude API and

Groq for cost). They insert ACVPS, replicate Bedrock rules as EthicalZen Smart Guardrails and

contracts, then route to any provider while keeping a consistent safety posture.

Implementation notes

●​ Start with shadow mode: EthicalZen evaluates but does not block; compare results against

Bedrock block/allow decisions.

●​ Automate parity tests: generate a policy test suite and validate equivalence before switching

enforcement.

●​ Introduce provider routing rules by workload (latency tier, cost tier, geography, compliance

tier).

Mode D: Dual-layer mode - defense in depth (both simultaneously)
Use for regulated or high-risk workloads where multiple layers of validation are required (input

validation, native at-inference checks, and output contract enforcement).

Reference flow
Customer App​
 ↓​
ACVPS Gateway → [Layer 1: EthicalZen PRE-check]​
 ↓ - Smart Guardrails (ML classification)​
 ↓ - Prompt injection detection​
 ↓ - Deterministic contract enforcement​
 ↓​
Bedrock InvokeModel → [Layer 2: Bedrock AT-inference]​
 ↓ - Content filters​
 ↓ - Contextual grounding​
 ↓ - PII redaction​
 ↓​
ACVPS Gateway → [Layer 3: EthicalZen POST-check]​
 ↓ - Response validation​
 ↓ - Contract envelope constraints​
 ↓ - Certificate compliance​
 ↓​
Customer App (safe response)

Customer outcome

●​ Maximum safety: three validation layers with consistent audit evidence and version pinning.

●​ Clear separation of duties: Bedrock provides native runtime controls; EthicalZen enforces

domain and contract constraints before and after inference.

Role split

Component Primary responsibility

EthicalZen Pre-flight guardrails and post-flight validation,

audit trail, certificate enforcement.

AWS Bedrock At-inference moderation, grounding checks,

and native PII redaction.

ACVPS Gateway Chaining, latency management, and

observability across layers.

Example use case

A regulated bank needs SOC 2 and OCC-aligned controls. EthicalZen contracts enforce financial

advice rules (pre + post), while Bedrock handles native moderation and grounding. Compliance

evidence includes EthicalZen certificates and Bedrock guardrail version pinning.

Implementation notes

●​ Keep latency budgets explicit (per-layer SLOs) and allow tiered enforcement (strict for prod,

relaxed for dev).

●​ Use structured refusal responses and standardized reason codes to reduce support burden.

●​ Instrument block/allow decisions at every layer for drift and incident response.

Mode E: Governance mode - SentryWorks auto-configures both platforms
Use when an organization needs policy-as-code governance: define safety policies once and have

them compiled and applied across both Bedrock-native guardrails and EthicalZen

provider-agnostic guardrails.

Reference flow
SentryWorks.ai Policy Hub​
 ↓ (governance policies)​
 ├──→ EthicalZen Portal​
 │ ↓​
 │ Alex Agent (FMA) → Smart Guardrails → DC Contracts → ACVPS Gateway​
 │​
 └──→ AWS Bedrock (via API)​
 ↓​
 CreateGuardrail → guardrailIdentifier → Applied to InvokeModel calls

Customer outcome

●​ Policy once, enforce everywhere: unified audit trail and compliance reporting across multiple

providers.

●​ Automated translation of governance requirements into runtime controls with minimal

manual configuration.

Role split

Component Primary responsibility

SentryWorks Policy definition, compliance rules, audit

requirements, cross-platform governance.

EthicalZen Policy-to-guardrail translation (FMA + Alex

Agent), contract generation, enforcement

outside Bedrock, certificate authority.

AWS Bedrock Native enforcement on Bedrock-hosted

models; configurations auto-managed via

API.

Example use case

A global insurer runs 200+ AI services across Bedrock, OpenAI, and custom models. SentryWorks

defines 'no unauthorized medical advice'. It auto-generates an EthicalZen Smart Guardrail for

non-Bedrock traffic and a Bedrock denied-topic/content policy for Bedrock-hosted models. One

policy yields two enforcement engines.

Implementation notes

●​ Represent policies in a portable intermediate format (policy IR) so multiple back-ends can be

compiled consistently.

●​ Attach evidence requirements (logs, traces, signed configs) directly to each policy object.

●​ Provide policy simulation and preflight testing before promotion to production.

Mode F: Observability bridge mode - EthicalZen as unified monitoring
Use when the customer wants unified compliance monitoring across multiple LLM providers,

even if enforcement remains provider-native (e.g., Bedrock Guardrails for Bedrock traffic).

Reference flow
 ┌── Bedrock (w/ Bedrock Guardrails) → CloudWatch​
 │​
ACVPS Gateway ───┼── OpenAI → (no native guardrails)​
(transparent) │​
 └── Groq/Custom → (no native guardrails)​
​
All traffic flows through ACVPS → Unified metrics (Prometheus/OTel) → Single

dashboard

Customer outcome

●​ Unified telemetry: compare Bedrock block rates vs EthicalZen risk scores; detect drift and

policy effectiveness issues.

●​ Cross-provider reporting: one dashboard for all LLM traffic, regardless of vendor.

Role split

Component Primary responsibility

EthicalZen Telemetry collection, dashboards,

effectiveness scoring, drift detection, A/B

comparison of enforcement decisions.

AWS Bedrock Primary runtime enforcement for Bedrock

traffic.

ACVPS Gateway Capture request/response pairs and emit

metrics/traces in a consistent schema.

Example use case

An ML platform team runs five providers. Bedrock traffic uses native Bedrock Guardrails; ACVPS

captures all request/response pairs for unified reporting and to identify where policies behave

differently across vendors.

Implementation notes

●​ Adopt OpenTelemetry spans per request with consistent attributes (tenant, app, model,

policy version, decision code).

●​ Store aggregate metrics plus sampled payloads under strict data handling and retention

policies.

●​ Use observability to drive continuous improvement: identify false positives/negatives and

refine guardrails.

Mode comparison matrix
Use this table to pick an adoption pattern per app portfolio, compliance tier, and desired vendor

flexibility.

Mode Name Best for Primary value

A Complement Add domain controls

while keeping

Bedrock Guardrails

Wedge into Bedrock

deployments with

added specialized

guardrails.

B Orchestration Manage/provision

Bedrock Guardrails at

scale from EthicalZen

Single pane of glass

and lifecycle

automation for

Bedrock Guardrails.

C Migration Transition from

Bedrock-only to

provider-agnostic

enforcement

Provider

independence with

minimal app

changes.

D Dual-layer Pre + at + post

inference layered

controls

Defense-in-depth for

regulated, high-risk

workloads.

E Governance SentryWorks policy

control plane across

platforms

Policy-as-code

governance and

unified compliance

evidence.

F Observability Unified monitoring

across providers

Cross-provider

analytics, drift

detection, and

effectiveness scoring.

Recommended Approach
●​ Start with Mode A (Complement): 'We add what Bedrock doesn’t have.'

●​ Expand with Mode D (Dual-layer): 'Defense in depth for regulated industries.'

●​ Platform with Mode E (Governance): 'SentryWorks as the control plane for AI safety across

providers.'

Proposed integration modes by common use case
Use case category Typical constraints Recommended modes

Regulated customer support

(bank/insurer)

Strict refusal behavior, audit

evidence, PII redaction,

prompt injection resistance

D + E (plus F for analytics)

Healthcare guidance / triage Medical advice safety, crisis

escalation, HIPAA-style PII

patterns

A → D, then E for scale

Enterprise internal copilots Leakage prevention, IP/PII

controls, cost limits,

consistent UX

A + F, then B for lifecycle

Multi-provider platform team Vendor flexibility, uniform

reporting, drift detection

F + C, then E

High-volume

experimentation teams

Fast iteration, A/B tests,

preflight simulation

B + F, then E

Implementation roadmap (reference)
●​ Phase 0: Define policy IR and contract schemas; establish tenant isolation and evidence

retention rules.

●​ Phase 1: Deploy ACVPS Gateway in shadow mode; collect baseline metrics; enable Mode F

observability.

●​ Phase 2: Add Mode A Smart Guardrails for 2-3 high-value domains; publish a parity test

suite.

●​ Phase 3: Enable Mode B provisioning for Bedrock Guardrails; add approval workflows and

version pinning.

●​ Phase 4: Roll out Mode D for regulated tiers; standardize refusal UX and incident playbooks.

●​ Phase 5: Launch Mode E governance with SentryWorks as the control plane; expand to all

providers.

Appendix: Bedrock API touchpoints (non-exhaustive)
●​ CreateGuardrail / UpdateGuardrail: programmatic guardrail provisioning and updates.

●​ InvokeModel: apply guardrailIdentifier and guardrailVersion for runtime enforcement.

●​ CloudWatch metrics/logs: integrate with ACVPS telemetry for unified dashboards.

	Executive summary
	At a glance

	Problem space
	Key tenets
	Core integration building blocks
	Integration modes
	Mode A: Complement mode - EthicalZen adds what Bedrock lacks
	Reference flow
	Customer outcome
	Role split
	Example use case
	Implementation notes

	Mode B: Orchestration mode - EthicalZen manages Bedrock Guardrails via API
	Reference flow
	Customer outcome
	Role split
	Example use case
	Implementation notes

	Mode C: Migration mode - from Bedrock-only to EthicalZen (multi-provider)
	Reference flow
	Customer outcome
	Role split
	Example use case
	Implementation notes

	Mode D: Dual-layer mode - defense in depth (both simultaneously)
	Reference flow
	Customer outcome
	Role split
	Example use case
	Implementation notes

	Mode E: Governance mode - SentryWorks auto-configures both platforms
	Reference flow
	Customer outcome
	Role split
	Example use case
	Implementation notes

	Mode F: Observability bridge mode - EthicalZen as unified monitoring
	Reference flow
	Customer outcome
	Role split
	Example use case
	Implementation notes

	Mode comparison matrix
	Recommended Approach
	Proposed integration modes by common use case
	Implementation roadmap (reference)
	Appendix: Bedrock API touchpoints (non-exhaustive)

